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Stresses and failure in the diametral compression 
test 

M. K. F A H A D  
Industrial Research Laboratories, University of Durham, UK 

The validity of the diametral disc test with a small flat ground has been established. The 
stress distribution was determined by a finite element method for a range of loading 
conditions. The results show that for the case of a point load, the failure is due to shear and 
compressive stresses at the loading point. Application of the diametral disc test for a ground 
flat was proposed and tested. The width of the flattened area must be less than 0.2 times the 
diameter of the disc to obtain accurate tensile strength. 

1. Introduction 
The diametral compression test, the Brazilian test, and 
the indirect tensile test are three names for one test 
method that has been used to measure the tensile 
strength of concrete [1]. It has also been used to 
measure the tensile strength of rock [2], coal [3], 
polymers [4], cemented carbides [5], and ceramics 
[6-8]. The test was independently introduced by Car- 
niero and Barcellos [9] in Brazil, and Akazawa [10] in 
Japan, around 1953. The diametral compression test 
was based on the fact that tensile stresses developed 
when a circular disc was compressed between two 
diametrically opposed forces. The maximum tensile 
stresses grow perpendicularly to the loading direction 
and are proportional to the applied load. 

The most important thing to note about diametral 
disc testing is that fracture must be initiated by tensile 
stresses if the test is to yield useful results. Because 
failure occurs along the diametral plane of the applied 
load, it is commonly assumed that the nominal tensile 
stress causes the disc to fail. However, some re- 
searchers [11, 12] believed that failure is initiated under 
the load points~ Because of this there is some disagree- 
ment as to what exactly is the mechanism of failure. 

Takagi and Shaw [13] proposed that plastic flow 
occurred before fracture and that the material be- 
comes plastic near the applied load before becoming 
plastic at the centre of the disc. As a result, the intensi- 
fied tensile stresses at the centre will be greater than at 
any other point towards the applied load. Therefore, 
failure is initiated at the centre of the disc. This was 
proved by Sampath and Shaw [14] using a very thin 
crack gauge (300 gm gold film). 

In fact, the strength values obtained in diametral 
compression testing are always much lower than for 
other uniaxial tests, such as three- and four-point 
bending. Wright [1] suggested many reasons for these 
differences. The first explanation was that the formula 
used for computing the tensile strength from the load 
is assumed to follow Hooke's law. But many brittle 
materials, such as concrete, do not follow Hooke's 
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law exactly. The second reason may be the specimen 
size effect. Whereby the statistical theory of brittle 
fracture predicts a decrease in the average strength 
with an increase in the specimen volume under tensile 
stress. The third reason suggested by Wright is that 
brittle materials obey the maximum tensile strain cri- 
terion. Therefore, in "the case of three- or four-point 
bending, there are only tensile stresses at the point of 
fracture. However, in the diametral disc test, the centre 
of disc is subjected to a compressive stress perpendicu- 
lar to the tensile stress and the strain produced by the 
two stresses are in the same direction. 

The objective of the present work was to investigate 
the validity and the point of fracture initiation of the 
diametral compression test. 

2. Stress analysis 
A theoretical basis for the stress analysis of a disc 
subjected to two concentrated diametral forces, has 
been postulated by Timoshenko and Goodier 115] 
and by Frocht [16]. This can be seen in Fig. la. Frocht 
also illustrated that the stress state at any point within, 
and on, the disc can be calculated [16] by using three 
general equations 
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,Figure 1 The diametral disc test under point load. (a) Geometry 
and notations, (b) finite element mesh. 

Figure 2 The diametral disc test under distributed load. (a) Ge- 
ometry and notations, (b) finite element mesh. 

where P is the applied load, t the thickness of the disc, 
D the diameter, R the radius of the disc, crx and r~y are 
normal stresses in the directions perpendicular and 
parallel, respectively, to the loaded diameter, and zxy is 
the shear stress; Fig. 1. The above equations show 
that along the loaded diameter (x = 0), the normal 
stress, r~, is tensile and constant with magnitude 
equal to 

o~ = 2 P / x D t  (4) 

r~y, parallel to the loaded diameter is a compressive 
stress. This increases from 3cy~ at the centre of disc 
to infinity beneath the loading points. The shear 
stress, z~y i s z e r o  along the diameter plane and 
hence ryx and ~y are the principal stresses on the 
plane. 

Although the above equations assume a point load 
on a thin disc, in practice the load is distributed over 
a finite area. Therefore, the above equations must be 
modified to reflect the finite load distribution. Hon- 
dros [17] developed an exact theoretical stress ana- 
lysis for the case of a pressure applied over two dia- 
metrically opposite arcs of angular width 2~ as shown 
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in Fig. 2. He showed that the stresses along the Y-axis 
are described by the following equations 

2p ~ (1 - -  r2/R 2) sin 2~ 

~Oy = --~ ~.1 - 2(r21R2)cos2c~ + r4/R 4 

(s) 

(1 -- r2/R 2) sin 2~ 
- 2p 1 

I(1 + r~/g2)q ) 
+tan  -~ ~ - -  r~--7-~qJ tan~j~ (6) 

where p is applied pressure and ~ is a small angle 
defined in Fig. 2, R is the radius of the disc. Inspection 
of above equations that the maximum compressive 
stress at the point of applied load is finite, instead 
of an infinite as when using Equation 2. Also 
Equations 5 and 6 yield identical stresses at the centre 
of disc, given by point loads, P, applied at the ends of 
the diameter as shown below. 



When substituting r = 0 (at the centre of disc), 
Equation 5 becomes 

2p (sin 2u - u) (7) O'Oy = - -  

When ~ is small, sin 2r ~ 2cr P = pc~Dt and Equation 
7 becomes 

2pr 
O - 0 y  : 

7~ 

2 P  
(8) 

= x D t  

A number of years ago, the finite element method 
was used to analyse the stress distribution of a dia- 
metral disc test [18]. This analysis was in good agree- 
ment with the analysis of Frocht  [16] who used 
photoelastic techniques especially at the centre of the 
disc. Price and Murray [4] also analysed the dia- 
metral compression test using the finite element 
method. They pointed out that the finite element 
method gave a good result compared with a photo- 
elastic stress distribution and with stresses calculated 
by an elasticity solution for a point near the centre of 
the disc. 

3. A new analysis of the diametral 
compression test 

Although there is a complete analytical solution for 
the diametral disc test, it was considered that the 
effects of a flat ground on opposite sides could be 
significant on the stress distribution. Therefore, finite 
element methods have been used to study the stress 
distribution of the diametral compression test. 

3.1. Mesh design 
The symmetry of the system enables the problem to be 
solved from analysis of the four quarters of the discs as 
shown in Fig. lb. The diameter of the disc chosen was 
five times larger than the thickness to ensure that the 
analysis just included plane stresses [19]. The element 
and mesh used to analyse the disc segment are shown 
in Fig. 1. To reduce the error in evaluating stresses in 
the vicinity of applied load, mesh refinement is carried 
out only at the region of applied load. 
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Figure 3 Principal  stresses along the (a)-x and (b) y axes for a point  
load diametral  disc test. ( ) Forch  analysis, ( - - - )  or  ( x ) finite 
element. 

up to a hundred times the tensile stress at the centre of 
disc. Because of these higher compressive stresses, 
failure may be initiated at this region rather than 
at the centre. For  this reason, point loading is not 
recommended. 

3.2. Stress analysis for the point load case 
The load in this case was applied at only one point, 
shown in Fig. lb. Finite element methods indicate that 
for this type of loading there is a good agreement 
between the theoretical solution of Frocht  [16] and 
finite element calculations, see Fig. 3. The tensile 
stress, crx, at the centre of disc was three times as large 
as the compressive stress. The tensile stress is constant 
along the loaded diameter, however, it rose sharply in 
the boundary regions between the tensile and com- 
pressive stresses. This may be attributed to the uncer- 
tainty of the finite element method beneath the load. 
In the y direction, only compressive stresses exist and 
the magnitude becomes very high beneath the load, 

3.3. Stress analysis for the distributed 
load case 

As discussed in the preceding section, the specimen 
may fail at the load regions due to the compressive 
and shear stresses and not in the central part of the 
specimen due  to the tensile stress. It was found that 
a distributed load applied over a finite area will reduce 
any stress concentration and consequently prevent the 
compressive and shear failure at the load region. One 
method used to distribute the load was by placing 
packing strips (shims) of suitable material between the 
specimen and the loading platens. However, care 
should be taken in choosing the shims for different test 
materials. Rudnick e t  al. [20] found that the strength 
values obtained are a function of the shim materials 
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Figure 4 Variation of the tensile stress along the Y-axis for the 
diametral disc test under  distributed load, ( ) Hondros '  equa- 
tion, ( . )  finite element. 

used. Therefore, much experimental work was needed 
to choose the correct material shims. Alternative ways 
of distributing the load are examined below. 

3.3. 1. Curve distributed load 
For  this case, the load was distributed over a small arc 
of finite width instead of a point, see Fig. 2. Hondros  
[173 has developed an exact theoretical stress analysis 
for this case. The stress analysis was carried out using 
finite element methods to review the effect of using 
small arcs upon the stress distribution of the disc. The 
results of the principal stress distributions are shown 
in Fig. 4 for an angle of ~ = 11.45 ~ Compared  with 
the theoretical case, a good correlation exists between 
the Hondros  solution and the finite element method. 
As expected, the compressive stresses beneath the arc 
loading decreased as the arc increased; for example, in 
this case, it was found that the compressive stress 
beneath the load was 8.40 times the tensile stress at the 
centre of the disc. Although compression failure may 
not be initiated with arc loading, it is difficult to 
perform this type of loading. This is because the load 
may not be uniformly distributed over the area 
of contact between the arc anvils and the specimen 
circumference. 

3.3.2. Flat distribution load 
One other method of loading the disc, is by flattening 
the disc over the loading area. This method avoids 
local crushing. The difference between this type of 
loading and the arc loading case is that the latter has 
an exact stress analysis given by Hondros  [17], while 
the former has noL 

In order to see more clearly the effect of the flat 
surfaces over the distributed stresses on the disc, the 
finite element method, see Fig. 5, has been used to 
analyse the stress distribution for this case. The invest- 
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Figure 5 Finite element mesh for quar t rant  of a disc with a flat 
surface. 
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Figure 6 The effect of the flat surface area on the tensile stress at the 
centre of the diametral disc test. 

igation has been carried out for different load area 
widths, B, namely, 0.15, 0.2 and 0.3 times the diameter 
of the disc specimen. Finite element calculations show 
that an increase in B results in a decrease in cyx at the 
centre of the disc, see Fig. 6, and leaves the compres- 
sive stresses at the centre virtually unaffected. Conse- 
quently, the stress ratio ((~S(yx) increases at the centre 
of the disc. It may also be seen from Fig. 6 that the 
tensile stress, C~x, varies little with change in B for the 
flat area in 0 < B > 0.2D. Consequently, the error 
produced by using Equation 4 is also small (4%). 
However, in cases where B > 0.2D the tensile stresses 
at the centre of the disc fell rapidly and no longer 
agreed with those given in Equation 4. Furthermore,  
finite element techniques demonstrate that the stress 
distribution in the flattened disc case is essentially 
identical to the case where an arc was used. 



4. Experimental procedure 
All test specimens used in this work were prepared 
from plaster of paris using silicon-rubber moulds. 
Plaster of Paris was chosen because it satisfactorily 
behaves like a typical brittle material, and is easily 
available and fabricated. 

All specimens were prepared using a water/plaster 
ratio of 50/100. This ratio was chosen because it gives 
stronger plaster [-21]. To eliminate as far as possible 
the porosity due to entrapped air, the slurry had to be 
mixed in a vacuum. It was necessary to fill the mould 
and level out the plaster using a spatula within 4 min. 
This is because the slurry becomes unworkable after 
that time. The slurry was then poured into the mould 
which was placed on a vibrating bed in order to 
extract the last of the air bubbles in the slurry. The 
specimens were then removed from the mould and 
allowed to dry at room temperature in the open air for 
28 days. 

To perform all the tests under plane stress condi- 
tions and to decrease the non-uniform axial distribu- 
tion of applied load, all the discs used in this work 
have a thickness of no more than one quarter of its 
diameter. It is worth pointing out that very thin discs 
should be avoided because they require very accurate 
alignment. 

5. Results and discussion 
5.1. Effect of ground flats 
Three types of applied load were used to study the 
effect of the flat surfaces on strength and fracture. 
These are the point load, 0.2/) and 0.3D flat ground. 
For  each case, 15 specimens were tested. The results 
are tabulated in Table I, using nominal stress, 
a l  = 2P/zcDt ,  which refers to the individual test situ- 
ation. It can be seen that the average tensile strength 
obtained from the point load case was significantly 
lower (33%) than t he  average tensile strength ob- 
tained from the other two flat cases. 

T h e  crack pattern produced from the point load 
tests is shown in Fig. 7c. It can be seen that the central 
fracture crack deflects at 45 ~ at the loading point, 
which agrees very well with maximum shear stresses. 
Fig. 8 demonstrates another benefit of the use of the 

T A B L E  I The diametral disc test results for D = 4 0 m m  and 
t = 10ram 

Rank Nominal stress (MPa) for D = 40 man, t = 10 mm 

B = 0 B = 0.2D B = 0.3D 

1 3.19 4.21 5.38 
2 3.20 4.28 5.56 
3 3.21 4.31 5.86 
4 3.31 4.73 6.06 
5 3.35 4.81 6.15 
6 3.38 4.97 6.41 
7 3.39 4.98 6.45 
8 3.50 5.03 6.50 
9 3.52 5.12 6.60 

10 3.77 5.24 6.66 
Mean 3.38 4.76 6.16 Figure 7 Typical fracture modes for diametral disc test. (a) Tensile 

fracture, (b) triple-cleft fracture, (c) point load fracture. 
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Figure 8 Load~leformation relationship for the diametral disc test. 

flat surfaces. As can be seen, when flattened discs are 
used, the load-deformation curves show a linear rela- 
tionship up to fracture. In comparison, the point load 
cases show non-linearity. At present it is believed that 
the failure of the point load case starts when shear 
cracks form at the edge of the loaded area due to the 
higher shear and compressive stresses. These propa- 
gate further by the action of the tensile stresses. As 
a result the tensile strength computed from this type of 
loading using Equation 4 is incorrect. 

The results also show that the 0.3D flat surfaces disc 
were stronger than 0.2D flat disc. This difference, how- 
ever, is expected and confirmed by the finite element 
stress analysis in Section 3.3. This analysis showed 
that the tensile stresses at the centre of the disc re- 
duced with increase of the flat surface area, see Fig. 6. 
Therefore, Equation 4 should not be used to calculate 
the tensile strength of 0.3/) case. These results show 
that for the determination of the tensile strength of 
brittle materials, the width of the loading area, B, must 
not be larger than 0.2 times the diameter of the disc 
specimen. 

Fig. 7 shows the more frequent modes of fracture for 
each case of loading. It was found that for both the 
0.2/) and 0.3D flat surfaces cases, the fracture propa- 
gates along the loaded diameter with very straight 
cracks which do not run the whole length of the disc 
diameter, see Fig. 7a. This is evidence that there is no 
failure near the loading point. In addition to tensile 
failures, the triple-fracture pattern occurred fre- 
quently. The triple-cleft fracture, see Fig. 7b, results 
from a secondary fracture initiated due to the bending 
of the two separate half-discs. 

5.2. Effect of size 
Two specimen sizes, 40 mm x 10 mm and 50 mm x 
10 mm, were used to investigate the effect of size on 
the tensile strength of plaster. In addition to size 
effects, two types of loading conditions (point and 
0.2D flat) have been carried out to study the effects of 
each parameter. 

The tensile strengths were calculated using Equa- 
tion 4. The results, including the average and standard 
deviation, are given in Table II. It can be seen that 
when the flattened discs are used, the smaller specimen 
size gives higher average tensile strengths compared 
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TABLE II The diametral disc test results for D = 5 0 m m ,  
t = 10mm 

Rank Nominal stress (MPa) 
for D = 50 ram, t = 10 mm 

B = 0 B = 0.2D 

1 3.18 3.86 
2 3.18 3.86 
3 3.23 3.98 
4 3.33 4.07 
5 3.42 4.15 
6 3.56 4.17 
7 3.63 4.29 
8 3.69 4.31 
9 3.72 4.34 

10 3.75 4.40 
Mean 3.47 4.14 

with the larger one. These results agree with the stat- 
istical theories of brittle fracture. On other hand, in the 
case of point loads applied to the larger specimen size, 
slightly higher average tensile strengths were found, 
compared with the smaller disc. This higher average 
strength of the larger specimen is incompatible with 
the statistical theory of fracture. Ovri and Davies [6] 
reported similar results in testing silicon nitride discs 
using point loads. The authors believed that these 
discrepancies can be explained as follows: the point 
load case failure will not be tensile failure which may 
be due to higher shear and compressive stresses at the 
point of contact of the specimen and the loading 
platen. Therefore, an increase in the specimen volume 
under tensile stress will not affect the results. 

6. Conclusion 
The diametral compression test has been evaluated 
and confirmed as a simple way of measuring the ten- 
sile strength of brittle materials. However, care must 
be taken when considering the results obtained from 
this test. In previous work, a number of authors have 
assumed that the disc specimen failed at the centre. 
This may not always be the case. Indeed, for the 
materials employed in this investigation, for the case 
of point load, it has been shown that the failure in the 
diametral compression test is due to shear and com- 
pressive stresses at the loading points. A different 
approach to the diametral compressive test with 
a ground flat has therefore been proposed and tested. 
The width of the flattened area must be approximately 
0.2 times the diameter of the disc to obtain an accurate 
tensile strength. When discs with the appropriate size 
of the flattened area were used in tests, results were 
obtained which were consistent and in agreement with 
theories of brittle failure regarding the effects of speci- 
men size. 
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